Aerospace engineer is getting tough on ceramics with Office of Naval Research grant

05/30/2017

UNIVERSITY PARK, Pa. — Namiko Yamamoto, assistant professor of aerospace engineering at Penn State, was recently awarded $447,663 through the Office of Naval Research (ONR) Sea-Based Aviation Airframe Structures and Materials program to study fundamental toughening mechanisms of novel ceramic composites and their use as alternative materials for high-temperature applications in the aerospace industry.

Through her project titled “Multi-functional Nano-porous Ceramics,” Yamamoto, in collaboration with Jogender Singh, professor in the Department of Materials Science and Engineering and chief scientist in Penn State’s Applied Research Laboratory, will seek to understand how the introduction of nano-pores into ceramics contributes to enhanced fracture toughness and increased damage tolerance, with minimal compromising of the material’s strength.

“Tougher ceramic materials are in high demand for numerous aerospace applications that require adequate mechanical strength, stability in extreme environments and lightweight materials,” said Yamamoto. “Although ceramics exist that meet those requirements, their applications as bulk structural materials are currently limited to their brittleness and low fracture toughness.”

Ceramics have a unique combination of material properties such as low density, high strength at high temperatures, wear resistance, corrosion resistance and low thermal and electrical conductivities. However, when high stress is placed on them, premature or catastrophic failure can occur.

Recently, some unique deformation behaviors have been observed when nano-porous ceramics are indented, including shear banding of collapsed pores. If controlled, this quasi-plastic deformation could potentially contribute to intrinsic toughening of ceramics and effectively mitigate crack initiation and propagation.

“Systematic understanding is currently missing about shear banding and its relation to fracture toughness of nano-porous ceramics,” said Yamamoto. “By conducting multi-scale parametric studies, we hope to gain the knowledge that is critical to the acceleration of practical fabrication and use of macro-scale nano-porous ceramic materials with increased damage tolerance. Also, through field-assisted sintering technology, we will pursue scalable manufacturing of such nano-porous ceramics.”   

If successful, the toughened nano-porous ceramics could find use as alternative materials for high-temperature and high-shear loading applications in aerospace engineering parts, helicopter rotor heads, ball-point bearings, gear boxes, thermal and physical protection layers, abrasive cutting tools and more.

Funding for the project will span three years and will support ONR’s interest in the field of Sea-Based Aviation Airframe Structures and Materials.

Yamamoto also received an ONR grant in 2016 for her research proposal titled “1D-Patterned Nanocomposites Structured Using Oscillating Magnetic Fields.”

 

Share this story:

facebook linked in twitter email

MEDIA CONTACT:

Chris Spallino

cjs53@psu.edu

A nano-porous anodic aluminum oxide membrane after nanoindentation showing shear banding behavior around an indentation impression

A nano-porous anodic aluminum oxide membrane after nanoindentation showing shear banding behavior around an indentation impression. Photo credit: Jingyao Dai.

Namiko Yamamoto, assistant professor of aerospace engineeringNamiko Yamamoto, assistant professor of aerospace engineering

Jogender Singh, professor, Department of Materials Science and EngineeringJogender Singh, professor, Department of Materials Science and Engineering

“By conducting multi-scale parametric studies, we hope to gain the knowledge that is critical to the acceleration of practical fabrication and use of macro-scale nano-porous ceramic materials with increased damage tolerance."

 
 

About

The Penn State Department of Aerospace Engineering, established in 1961 and the only aerospace engineering department in Pennsylvania, is consistently recognized as one of the top aerospace engineering departments in the nation, and is also an international leader in aerospace education, research, and engagement. Our undergraduate program is ranked 16th and our graduate programs are ranked 15th nationally by U.S. News & World Report, while one in 25 holders of a B.S. degree in aerospace engineering in the U.S. earned it from Penn State. Our students are consistently among the most highly recruited by industry, government, and graduate schools nationwide.

The department is built upon the fundamentals of academic integrity, innovation in research, and commitment to the advancement of industry. Through an innovative curriculum and world-class instruction that reflects current industry practice and embraces future trends, Penn State Aerospace Engineering graduates emerge as broadly educated, technically sound aerospace engineers who will become future leaders in a critical industry

Department of Aerospace Engineering

229 Hammond Building

The Pennsylvania State University

University Park, PA 16802

Phone: 814-865-2569